
Butterfly Annotator — Report

Oscar Davis, Boan Zhu, Yeye Chen, Zhili Tian,
Xingzhi Qian, Siran (Claire) Shen

January 2022



Part 1

Introduction

Machine Learning and Deep Learning are two blooming Computer Science fields that allow to
infer, through their different algorithms and techniques, information about an input dataset.
This information could be a discrimination of the data into categories (a classification prob-
lem), or, for instance, it could also be that of recognizing either certain parts of images or
even what they represent entirely. Yet, the methods employed usually employ some form of
“statistical” inference: the Machine/Deep Learning model infers what the correct answer is
to any input by learning through what it knows to be correct already. But it then requires
that the model has input data and output answers that it can assume to be valid (ground
truth).

Mapping the input data to correct output answers is called annotating the dataset, and
this task can become easily quite tedious. When trying to recognize various parts of an
image, the model would require of course the images themselves and regions with labels
describing the outlined area of the picture, which would serve as the ground truth. It is
quite easily understandable that if one had to annotate hundreds of images on their own, it
would be not only cumbersome, but also very time-consuming.

This is where we introduce the software we have been working on: Butterfly Annotator.
What we have tried to create is a tool that allows to efficiently annotate large datasets of
images, provided a textual description of them by the user. When done, the users can then
export their annotations to a JSON file containing a description of each region and its label.

The main goal of the software is to accelerate the workflow of annotators, by making the
software as convenient as possible to avoid wasting time on trivia. To do so, we have first
decided to implement our software as a web application; this indeed is already quite practical
as the user does not need to install anything supplementary and can just use their preferred
browser. Furthermore, for a better navigation throughout the website, we have decided to
create a “single-page web app.” What this means is that instead of loading different pages
every time the user wishes to consult a certain part of the website, they do not need to
reload the page and can just quickly go to whatever it is they wanted. This was easily
realized thanks to the Vue.js framework, which enables this kind of application quite easily,
and which just then made HTTP requests to our server written in Python using the Flask

1



framework. The reason we used the latter is because of the simplicity and speed with which
we can write code, with satisfactory performance; we could allow to value productivity in
this case, because the back end of this application is not its major constituent.

Furthermore, the software is best fit for datasets that are constituted of the images and
descriptions of groups of images that go together. Hence, as an example, if a developer
wants to recognize features of butterflies from varied species, they can group the species
together, describe them uniformly and then attribute quotes from the description to each
region they create. This has been done so that the user does not have to input the same
words repeatedly. And, to make this task even quicker, our software automatically suggests
relevant sections of descriptions that the user might want to use as labels, based on some
straightforward text processing techniques and the inputs the users have previously selected.
As for the annotation itself, the focus was mostly on making the tool simple and intuitive
to use, and to allow basic functionalities such as undo/redo.

Finally, to further increase productivity, we have decided to allow multiple users to col-
laborate on different “image banks.” What we have called “image banks” are nothing else
but datasets of images with their descriptions. Then, using a simple multi-level permission
system, users of different authority can manage the bank by allowing others to write, remov-
ing users, annotating images, just viewing them, or even deleting the bank itself. However,
if one desires to just use the software on their own, they can also run it locally without any
issue.

Working on this project as an efficient team required of us to be well organized. To
try and do so, we applied a few strategies. First, we had a centralized group chat, where
we could all post important messages about whether we should call, when, and why, or if
someone encountered an important issue. We then used Microsoft Teams®to actually do
the calls, and sometimes share more specific content on it; it also allowed us to produce this
report effectively. For the tasks we had to accomplish, we simply grouped them all in a
Scrum board, consisting of the three usual columns: ’To do’, ’In Progress’, ’Done.’ We had
thought of doing several boards for each aspect of the project (at least front-end/back-end),
but as we are only a small team and as everybody worked on both sides of the project,
we did not deem it useful in the end. Finally, we also were cautious when using our VCS
(Version Control System), Gitlab, to enable further parallel work: we used branches and
merged them back whenever they were ready in to a branch called ’develop’.

2



Part 2

Design and Implementation

2.1 The stack and the UI

Although briefly mentioned, let us expand on why we chose the tools we worked with and
explain the decisions we made with respect to design.

We chose to work using a web application, for a few reasons. As mentioned in the
introduction, this makes the application very easily deployable across multiple platforms,
since there are no dependencies on the operating system of the user; maybe except for some
of them, the user can choose the browser they wish, as JavaScript APIs are quite well unified
overall. Then, we decided to do a single-page web app as it is very convenient for the user
to navigate through, as they do not need to reload the page every time they want to consult
some content. This has however posed a small performance issue discussed later in the
section concerning the annotation part of our software. Another big advantage of the web
is that it is much easier to create applications that scale well to different screens, thanks to
many modern design frameworks; they are then called ‘responsive.’

Thus, many choices were available to us with respect to the libraries/frameworks we were
going to use. First, we chose Vue.js for management of the front-end because it is a very
well documented solution and is remarkably simple yet powerful. So is React, but due to the
experience of the team members we sticked to Vue. Then, we needed to decide what design
framework we were going to use. Here again, we chose one of the most widespread solutions
out there which is Bootstrap (usable in Vue thanks to BootstrapVue). We did so, because
Bootstrap’s grid system is remarkable and simple: the page is divided into 12 columns (a
clever choice, as it can be divided by 1, 2, 3, 4, 6 and 12) and the programmer just specifies
the number of columns they want for each of their elements to occupy. It also contained
many practical components, and the community and the documentation are exceptionally
large — which is particularly important to us to be able to fix issues efficiently. Some claim
that Bootstrap is convoluted and out-of-date, but due to the previous considerations and the
experience the team members had, it is the solution we kept. We have thus also designed
a responsive website, which should work on many screens, although smaller ones are not
recommended as they could be quite unpractical; besides, our software was not rigorously

3



tested on mobile phones, although there is already partial support for it.

As for the server, we decided to use Flask as it is a very flexible option with many different
extensions available for it, very easily deployable on servers, and it is also impressively easy
to write a piece of software quickly with it. Moreover, a few team members had experience
with Flask, and everyone knew how to program in Python, which consolidated our choice.

2.2 The database and the image banks

As we are manipulating user data, we had to decide of a way to store it. We decided to
use ‘standard’ SQL databases, as everybody was at least familiar with relational databases.
The question was then: which one should we choose? Postgres? MySQL? We opted for
another practical option as it fits the purpose of this program being run on private servers:
an embedded SQLite database. SQLite allows having a small database without running an
extra piece of software. To use it properly with Flask, we installed the ‘SQLAlchemy’ ORM,
which also allows to define and use models programmatically: that is, we wrote 0 lines of
SQL, and only created Python classes to represent our models, and then used pre-defined
functions to query, update and delete entries from our tables.

Figure 2.1: the representation of our relational database.

One quite practical feature of Butterfly Annotator is its ability to manage separate data
sets, without having to change anything. The design is quite simple: each ‘bank’ represents
a dataset. Each bank has users that can access it, as we will describe in a later section.
Internally, each bank is simply a folder named after the bank itself, and containing three
types of files:

4



• ‘description.txt’: a simple file containing a description for the bank,

• Textual descriptions of ‘groups’ in .txt files,

• PNG Images, grouped.

What is meant by ‘groups’ is that each image can belong to a group that categorizes it: it
could be for instance its breed if the images represented dogs. To group images, it suffices to
all prefix them by naming their files ‘<prefix> nameofthefile.png’. (Note also that only PNG
files are supported, so far.) Then, the corresponding description files should just be named
‘<prefix>.png’; all images of this group will have the same description; if no description can
be found, the image will be skipped. As mentioned previously, this allows the user to easily
reuse the same descriptions to be able to annotate faster, as they can then re-use the same
description bits which the text-processing part will learn as describe further, and as grouped
images most certainly require the same textual annotations.

Initially, the only way to upload a bank was to upload in the file system which would
yield the rights by default to a single super-admin user called ‘admin’ whose password is
editable in ‘password.txt’. Although the previous option is still available, now if one creates
a ZIP archive with the previously mentioned structure, then it is possible to drag and drop
it on the view displaying the list of banks.

Figure 2.2: the drag-and-drop system.

2.3 Drawing

The key feature of Butterfly Annotator is to annotate pictures with the corresponding de-
scription bits. The textual description part is described in the next section, but this one
assumes that the user has already selected quotes that they want to attribute to regions on
the image (or uses the suggested ones).

5



The workflow is the following: users need to first create a polygonal area, by clicking on
the image to place the points of the shape they are drawing, and then a tooltip window pops
up when they close the figure (by clicking on the first point of the polygon), where they can
associate the area with one of the previously chosen quotes. Of course, the users are offered
a few practical commands, which are:

• Pressing ‘Escape’ while drawing a shape stops the shape,

• Clicking the last drawn point in a shape removes it,

• Clicking while holding ‘Shift’ close to a polygon removes it,

• Clicking while holding ‘Shift’ close to a polygon removes it,

• Clicking and holding close enough to a polygon’s point drags it,

• ‘Ctrl + Z’ and ‘Ctrl + Y’ allow to undo/redo adding or deleting a polygon, or moving
a point.

All these are described in the help section, opened by clicking ‘Help?’ at the bottom
right corner of the screen.

Figure 2.3: the annotation tool itself. Note the ‘Next’ and ‘Previous’ buttons allow to
navigate between the images easily. You can also notice the Undo/Redo buttons.

From the design point of view, we separated the keywords selection and the region se-
lection on the image, to encourage users to focus on one thing at a time. They would also
usually first select keywords and then associate them to regions; so, this avoids going back
and forth between the two areas of the screen. One only needs to go through the description
text once and selects keywords along the path, and then they can concentrate upon drawing
polygon from the image. The pop-up window for combining area and description bit is also
designed to show up right beside the mouse to avoid long distance mouse movements.

As for implementation, we utilized P5.js for area selection and management. It is a simple
graphics library that is particularly easy to use that allows to draw lines, ellipses, and images
on what they call ‘canvas’. One of the issues it posed, however, is that it seemed that if the
user chose to switch to another image, the resources of the P5 canvas for the previous one
would not be freed — probably because of the single-page nature of our application, and is
it not exactly made to work with Vue in the first place. To fix this, we simply make the user
reload the page when switching canvases.

6



Also, to make the user distinguish the polygons we created a small function, which,
depending on the index of the polygon in the list of polygons, associates it to always the
same color: it is like a mathematical sequence.

For the coordinates to be exact, we simply create a P5 canvas of the size of the image,
and we keep track of the mouse position when the user clicks on the image and store all
the clicked coordinates to form a polygon. Successfully created polygons are stored into an
array. An index is kept recording the current polygon for undo/redo functionality. Finally,
the ‘Save’ button initiates the serialization of the data and sends the collection of all the
annotations to the server. If the user has edited an annotation or created one, they are
recorded as its author, which can be seen by simply clicking the outline of a region that has
already been annotated.

Also, implementing the tooltip was not an easy task, as it has to open up on the mouse po-
sition of the user when they have finished their shape. To do so, we created a ’fake’/invisible
’div’ (an generic HTML tag) that follows the mouse; then, we created the tooltip itself
by using another library, called Tippy, that enables easily aesthetic and complete tooltips
creation.

Figure 2.4: a small demonstration of what the regions look like when annotating.

One of the main shortcomings of this tool is that the size of the canvas is fixed; therefore,

7



the user cannot really zoom in to/out of the image, unless using their browser’s zoom feature
— which can be an issue for smaller and larger images, respectively.

No bugs that were caused exclusively by this part of the software were detected when
stress-testing the tool.

2.4 The description selection

Under the image annotation part of the annotating view, the user can find the description
of the current image. They can select keywords and create a mapping between the keywords
and the polygons they drew on the image. We provided our users with an effortless way to
select text bits, where they can highlight the quotes they want, and, with a click of a button
(’Add bit’), the words are ready to be mapped to regions of the picture.

We would also like to provide our users with a functionality that suggests keywords to
highlight in the description section automatically. This way, the users would not even have
to go through the trouble of highlighting and adding words on their own, for every image.

Our supervisor, Josiah Wang, provided us with three lists of butterfly-related descriptive
words, categorized as adjectives, colors, and patterns. The approach we chose is to iterate
over all words, and, whenever we encounter an adjective, we assume it is the beginning of an
eligible sequence for a suggestion; we thus keep the beginning index of this word, as the start
of our suggestion. We continue reading until we reach a noun, whose final character’s index
in the description will mark the end of this suggestion. If we never encounter an adjective,
we stop at the first period or semi-column. We then keep all pairs of indices in a list and
pass them to the front-end to process.

Figure 2.5: an example of the results of our algorithm on a description of a butterfly.

This simplistic process works well, because it relies on the structure the English language
imposes on epithets: they come before the noun they qualify, usually. This heuristic also
works well because we assume that the descriptions are somewhat ’fit’ for annotation labels:
indeed, we suppose that we will see quotes best described by ’many adjectives followed by a
noun’, then sentences, for instance, such as ’The car is red.’

To further enhance this functionality, we wanted our system to remember what our users
have selected, so that future suggestions will be more accurate, targeting this user. Initially,
we tried to update the adjectives list and the nouns list, by processing what users have
selected from the front-end. This does not work because we do not know if the first word is
an adjective or noun. For example, ”wings with dots” can be a keyword that user selects,
and we cannot know if the first word is an adjective. So, to make as much enhancement as

8



we can, we must narrow what our system learns from the user. We introduced a new list
named user-selected keywords that stores keywords, that users previously selected and saved.
In the future suggestion process, the user-selected list will be traversed first to match the
description before mapping the pairs according to the instructor-given lists, and the contents
between start and end index of each keyword extracted from the user-selected list will not be
considered again in the mapping. This is in the aim of making the priority of user selecting
words over auto generating pairs. This can help make the keywords suggestion more precise
and save time selecting words manually.

2.5 Undo/redo

A key functionality present in many software relating to images is that of undoing actions
and potentially redoing them. It is key, because mis-clicking can occur so simply that it
should be easy enough for a user to cancel their mistake. First, let us note that before
having to undo an action, a user has already at least two options to cancel their mistakes:
they can press the ‘Escape’ button to stop drawing the current polygon, or they can click
on the last point they have added to the shape to remove it. Although it does not cover all
possibilities, it comes in quite handy to cancel actions on the fly.

In more sophisticated and complex systems that do actual image processing, such as
Adobe Photoshop, the Commander Pattern is usually used with storage/caching of previous
states partially. Here, each action is simple: we either add or delete polygons or points, or
move points back and forth. Therefore, we chose to implement this system in a simple yet
efficient fashion.

We implement this feature by creating a structure resembling doubly linked list with a
pointer to artificial nodes for a head and a tail, and a pointer to the last node whose action
was done, call them ‘head’, ‘tail’ and ‘curr’ respectively; we will call this structure ‘history’.
Each action that a user does is represented by a node in the list; the node itself contains
two pointers (to point to the previous and next actions) and two anonymous functions. The
latter are used for undoing and redoing an action; what we have indeed noticed is that as
all actions are simple, it suffices to change the state back to what it was before in a few
lines of code. Therefore, when a node is first inserted, its ‘redo’ action is executed, and it is
appended at the end of the chain.

Initially, the ‘head’ node has no previous element — which will never change — and no
next element for implementation reasons on when we insert the first element; the ‘tail’ node
has no next element — and never will have one — and has as a previous element ‘head’;
finally, the ‘curr’ pointer points to ‘head’. Thus, whenever an action in history is inserted,
we take ‘curr’ and make its next pointer point to the new node, and we also set the previous
pointer of ‘tail’ to point to the new node as well; finally, we set ‘curr’ to the new node.

Let us show briefly why this works well. In the case that no action has been undone,
then the next pointer of ‘curr’ is ‘tail’ and the previous pointer of ‘tail’ is ‘curr’. Then, we
simply append the element to the end. If actions were undone, then setting as if it were the
end of the linked list, losing the pointers to the previously held pointers by ‘curr’, makes it

9



the last done action and discards the previous ‘branch’ of the history — which is what we
want.

Figure 2.6: inserting when the last action is the most recent.

Figure 2.7: inserting when the last action is not the most recent.

Note that we have these ‘head’ and ‘tail’ nodes so that we know when there are no further
actions to redo, or no previous actions to undo. We could have done this by identifying ‘null’
elements, but this way is much cleaner, as we do not have to disambiguate whether ‘curr’
points to a node whose action was taken or not: it has always been taken. Otherwise,

10



especially for the first action in the history, we would need to know if the action has been
taken or not, since if ‘curr’ points to the first element, then we need to determine if the
action has been undone or not. (If it has, then setting the pointer ‘logically’ to the element
the previous pointer points to, would make the ‘curr’ pointer ‘null’ and could then lose the
entire history.)

We have then just implemented this in our JavaScript code, where pointers are simple
references to the objects. For the aesthetic side, we have two undo/redo buttons, surrounding
the ‘Save’ button — disabled when nothing can be undone and/or redone, respectively. And
users can of course enjoy applying their favorite key combinations that are “Ctrl + Z” and
“Ctrl + Y”.

Except for some rare display bugs, this part of the software seems to work correctly
on its own. However, due to poor and quick conception on the annotation tool side, some
obscure combinations of saving new annotations an undoing/redoing them can cause small
side effects, such as duplicate regions. One of the reasons for these bugs is that JavaScript is
statically typed; indeed, it makes it difficult to get a hold on which field is part of a certain
object or if types match. Therefore, we have shortly considered switching to TypeScript,
but it was too late, as we had already an important code basis. This issue can however be
easily fixed by simply reloading the page and deleting one of the extra polygons.

2.6 Simple multi-user permission system

Once the user has successfully logged in or created an account, they now need to access
banks to start working. As a side note, we will not discuss much of the logging/registering
system, because it is standard; note, however, that users can edit their profile picture, which
is useful when navigating through the list of images — indeed, they can see who the last
user to have annotated each image is.

Figure 2.8: ‘They can see who the last user to have annotated each image is.’

What we wanted to do is to create a flexible and complete system in which annotators
can effectively work together. To do so, we have thought that a hierarchical structure among

11



the annotators would help to allow potentially large teams to annotate together, without
too much struggle.

To manage accesses to banks we have represented them in our database as the ‘BankAc-
cess’ model. Each such entry refers to a user and to the bank to which they are given access
to, and it also contains the ‘permission level’ with which might want to access. The permis-
sion level is an integer which represents the authority the user has on the bank: the higher,
the more they have power. We have identified a few distinct categories that might be useful:
‘Viewer/Visitor’ (so that users can just consult the bank and its annotations), ‘Editor’ (so
that users can also edit annotations), ‘Moderator’ (so that users can moderate the team, i.e.,
add or remove people), ‘Admin’ (for the leaders of teams, who can also delete banks). Note
that each level encompasses the permissions of the previous one.

Finally, note that this is represented by a tab on the view where the user can see the list
of images, named ‘Accesses’.

Figure 2.9: the ‘Accesses’ tab; notice also the ‘gear’ button next to the name of the bank,
which allows to access settings (currently just deleting the bank).

12



Part 3

Evaluation

3.1 Comparison with existing solutions

We would like to compare this butterfly annotator with the existing commercial online image
annotator ”PlainSight” to find out what are the strengths and shortages of our project.

Differences in main functions:

PlainSight supports uploading files in multiple formats, including single image, via CSV,
Amazon S3 and via Google Cloud. While our product only accepts zip file in a strict format
as butterfly annotator is designed for specific bank images, which includes many images and
description in text.

PlainSight only supports doing one label at a time while our software allows users to
upload a whole description and map label area to different text.

The way of selecting items of PlainSight is flexible as it offers rectangle, polygon, etc.
There is even an AI called ’SmartPoly’ to polish the curve after one draw a rectangle upon
the item. Our software can only do polygon selection.

Butterfly annotator has a multi-user permission system. It allows users to work on the
same image bank with permission. PlainSight system is implemented like GitHub. There is
a graphical dashboard indicating ’Overall Assests’, ’Recent Activity’, ’Label Usage’, etc. It
even comes with a version control system.

Our shortages

PlainSight provides many more buttons to help annotate, including ’Rotate Image’, ’Resize
to Fit’, ’Delete label’ to manipulate image/label, and ’Skip’ to skip current image for now.
It also allows users to change the appearance of image and pen. There is also a graphical
progress bar beside the canvas to manage the whole annotation process. These are quite
practical features our software does not implement.

13



Our strengths

Because of the more precise and narrow scope of our software, we have some tools that are
quite adapted to the tasks at the hand, namely the description system, which can enable
very quite labelling — as the user does not have to write the label at all.

3.1.1 Conclusion

Although it is of course a more powerful tool as it is developed by a larger team that has
been running for quite a while now, we believe that the software can be convoluted a bit
on some sides, despite its undeniable strengths. However, this is not an issue we have been
facing, because we wanted to make the tool as intuitive and easy as possible, so that users
can start working as quickly as possible.

3.2 Unit tests

We add unit tests in our front-end part (Vue) to test our webpage components’ features and
make sure we have high quality code. We use “Vue Test Utils” (VTU) and “@testing-library”
to simplify testing Vue components. These tests are used for checking our Vue components
are working properly and meet the functionality we want to show. They do not include any
implementation details, so any refactors of our components do not break our tests. These
can also improve the maintainability of our code, making it easier to fix bugs when updating
the code at some point in the future.

3.3 How successful was the project overall & does this

meet the needs of prospective users?

Our goal in this project was to provide our users with the easiest and effective annotation
tool. We assumed our users would want to see a clear and simple annotation tool that is
powerful yet convenient. We made our interfaces as simple as possible, and every feature we
provided is easy to use. We did well in practicality and convenience in our project, as all
the functionalities enabled by our software are accessible and enable quicker annotating.

Enabling the upload of zip archives was an important addition. At the beginning, all the
images need to be uploaded separately, and their textual descriptions need to be copied and
pasted manually, which takes a lot of time if the user want to upload lots of them. So, we
tried to improve this feature by supporting the upload a combination of images and texts at
the same time, which met the needs of Josiah Wang — our project’s supervisor. We then
further took the feature to detecting folders in file systems, and now dragging and dropping
makes the process of creating an image bank very straightforward.

Providing automatic keywords selection for the image’s description is a key feature for

14



annotators to be efficient. Indeed, it saves them a lot of time, because they do not need to
type the labels of everything they annotate, every time. This is particularly true when we
started learning from the user input, as the same labels would get suggested for the same
type of images.

Overall, we believe the project was quite successful, except maybe for the first iteration,
when we had to determine how we were going to work efficiently together and get used to
that workflow. We followed the initial plan from the beginning during every iteration and
completed all the required functions at the end. We achieved our original goal which is to
make annotators’ life easier.

3.4 How could this project be taken forward?

The most practical feature we could implement is to propose suitable candidate image regions
that might be mentioned in descriptions automatically. This will be hard to achieve but it
will save user’s annotation time and make their work much easier. Another improvement
could be reducing the errors in automatic keyword selection and try to cover more potential
keywords. We have made a lot of progress to do in this feature, but still need to improve
and NLP could be a viable technique to use. In addition, we have a quite small coverage of
unit tests on our back end, and we should write more of them for further versions, as the
number of features increases.

We could also implement more features for large teams, with respect to the permission
system, and why not add web hooks for other applications to integrate well with ours. One
practical component we could implement is to allow users to partition their banks, so that
they can know which user has to annotate which image. Another desirable collaborative tool
is the management of simultaneous editing. This could be simply implemented using Web
sockets to broadcast events, although there would be quite a few challenges with respect to
synchronization.

Finally, since we have made a single-page web application, we could actually try to deploy
it as a software to install for users, using frameworks such as Electron, which enables making
software that can be installed on one’s computer.

15



Part 4

Ethical Considerations

As we view our software, we see three main ethical considerations.

The first of them is the data security. Of course, the data, once uploaded to our servers,
should be safely stored and not accessible to any intruder, especially if the stored images and
descriptions are sensitive information or even just owned exclusively by the user(s). However,
the goal of this software was firstly to be functional and quite a few simple breaches are still
exploitable in our product as it currently is. This is because we chose to focus on functionality
rather than security, for time considerations, but also because we considered initially that
users will often self-host our software and run it on their own servers which would accessible
only to people of trust in the first place, if not just run locally on their computer. Moreover,
quite a few vulnerabilities could be simply fixed, should the software be deployed on larger
scales.

Then, there is data privacy. Indeed, because of the focus on features and the assumption
that most users will run this program on their private servers, as things are, we simply store
users’ files locally on the server. If the software was ever to be continued, files cannot be
boldly stored on the server, as it poses not only security issues, but also if the servers are
owned, say, by a company, then this company can access the data without any trouble. To
palliate this issue, files could be for instance encrypted using key pairs of some sort, with
which only the user owns the private key. This way, once the file is uploaded and is verified
to be a valid image, it would be encrypted for storage, and decrypted whenever the user
accesses them. However, this creates other challenges with respect to multi-user systems (as
the same key should be shared) and implementation, as we would need to access the private
key from the browser too — which then poses the problem of how to store them properly.

Finally, one final consideration we have thought of is that of “unethical” text-processing
suggestions or suggestions of other kinds. This could clearly be the case if the software’s
features are taken further. Indeed, if for instance a region suggestion feature was to be
added, that would suggest some areas of the picture and some label to be combined for an
annotation, some samples could face discrimination. It has been quite actively discussed
recently when talking about ethics in AI, namely with Twitter having a piece of software
choosing which part of an image should be displayed when it is not fully displayed; it was

16



shown that faces from ethnic minorities would not be recognized by the system. Although
the software is not at this stage yet, it is an issue to foresee, since, as previously mentioned,
ethics in automation are highly discussed.

17


	Introduction
	Design and Implementation
	The stack and the UI
	The database and the image banks
	Drawing
	The description selection
	Undo/redo
	Simple multi-user permission system

	Evaluation
	Comparison with existing solutions 
	Conclusion

	Unit tests 
	How successful was the project overall & does this meet the needs of prospective users? 
	How could this project be taken forward? 

	Ethical Considerations 

