
MEng Individual Project

Imperial College London

Department of Computing

A Data Visualisation Tool Based On
Conceptual Modelling

Author:
Yeye Chen

Supervisor:
Dr. Peter McBrien

Second Marker:
Dr. Thomas Heinis

June 18, 2023

Abstract

Modern data visualisation tools are highly flexible, giving users complete freedom to explore their
data. However, an excessive degree of freedom can cause confusion and result in an inappropriate
visual representation of the data. We deliver a data visualisation tool that utilises the full knowledge
of the conceptual schema of the data source, by mapping it to a set of visualisation schema
patterns, in order to simplify the process of visualisation generation. This tool has demonstrated
its effectiveness in various visualisation tasks. In addition, we have explored expanding additional
visualisations for specific patterns.

Acknowledgements

I would like to thank my supervisor Dr. Peter McBrien for the opportunity to work on this project
and for the invaluable guidance and support throughout its duration. Dr. McBrien’s expertise and
insightful advice have been crucial in shaping the success of this project.

I would also like to thank my friends for their constant support and motivation over the past
four years, and my family for their belief in my abilities and continuous encouragement to pursue
my goals.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Example . 7
1.3 Contributions . 9

2 Background 10
2.1 Grammar of Graphics . 10
2.2 Visualisation Schema Patterns . 10

3 Related Work 13
3.1 Reverse Engineering . 13

3.1.1 Research areas . 13
3.1.2 Existing solution . 14

3.2 Visualisation Solutions . 16
3.2.1 Tableau . 16
3.2.2 AutoViz . 16
3.2.3 SPSS Statistics . 16

3.3 Visualisation Libraries . 17
3.3.1 ggplot2 . 17
3.3.2 D3 . 17
3.3.3 Vega . 17

4 Design 18
4.1 Overview . 18
4.2 Connect to the Database . 19

4.2.1 Ethical issues . 19
4.3 Reverse Engineering . 19
4.4 Schema Pattern Matching . 21

4.4.1 Pattern Characteristics . 21
4.4.2 Handling Subset Entities . 22

4.5 Recommendation for Visualisations . 22
4.5.1 Basic Entity Visualisations . 22
4.5.2 Weak Entity Visualisations . 23
4.5.3 One-Many Relationship Visualisations . 24
4.5.4 Many-Many Relationship Visualisations . 25
4.5.5 Reflexive Relationship Visualisations . 26

4.6 Visualisation Generation . 26

5 Technical Implementation 27
5.1 Framework choices . 27
5.2 Connect to the Database . 27
5.3 Reverse Engineering . 28

5.3.1 Handling User Selections . 28
5.4 Pattern Matching to models . 29
5.5 Retrieving Dataset from the Database . 30

5.5.1 Filtering . 30
5.6 Data Type Classfication . 30

2

5.7 Visualisations . 31
5.8 Handling Unknown case . 32

6 Evaluation 33
6.1 Functionality . 33
6.2 Usability . 34

7 Conclusion 36
7.1 Future Work . 36

A Appendix 37

3

List of Figures

1.1 ER schema of a fragment of the Mondial database [1] 7
1.2 Inappropriate tree map by Tableau . 8

2.1 The data flow diagram for producing meaningful graphics 10
2.2 Visualisation Schema Patterns for Data Visualisation 11
2.3 ER schema of the one-many relationship between airport and city 11
2.4 transforming a many-many relationship to a one-many relationship by filtering . . 12
2.5 denormalisation transformation . 12

3.1 Illustration of the restruct algorithm . 14
3.2 The resulting EER schema [2]:p.226 . 14
3.3 ER schema in JSON format generate by AmazingER 15
3.4 Datatype visual aid comparison . 16

4.1 Flowchart of the process from user inputs to a visualisation 18
4.2 Relational database schema of a fragment of the Mondial database [1] 20
4.2 Relational database schema of a fragment of the Mondial database [1] (cont.) . . . 21
4.3 Transforming a subset . 22
4.4 An example of complete dataset . 24

5.1 Required database information in JSON format . 27
5.2 one-many example of valid user selection . 28
5.3 example of invalid user selection . 28
5.4 Functionalities of AmazingER used in pattern matching phase 29
5.5 reflexive dataset example for a chord diagram . 31
5.6 converting an inappropriate dataset to output a chord diagram 31
5.7 . 32

6.1 . 34

A.1 A descending bar chart showcasing country areas. 37
A.2 A pie chart representing the country area for a selected subset of countries. 37
A.3 A calendar chart representing the sales amount of cell phones spanning the years

from 2021 to 2022. 37
A.4 A scatter plot representing the geographical locations of airports, with latitude plot-

ted against longitude. 38
A.5 A scatter plot representing airports, with latitude plotted against longitude, and the

colour of each data point corresponds to the associated province. 38
A.6 A bubble chart visualizing the geographical locations of islands, showcasing latitude

plotted against longitude. The size of the circles corresponds to the elevation of
each island. 38

A.7 A bubble chart visualizing the geographical locations of islands, showcasing latitude
plotted against longitude with the size of the circles corresponding to the elevation
of each island. Each bubble is categorised by the island type in colour. 38

A.8 . 38
A.9 . 38
A.10 A line chart depicting population trends over the years for countries of El Salvador,

Netherlands and Philippines. 39

4

A.11 A stacked bar chart showing user ratings for different phone brands. 39
A.12 A grouped bar chart comparing populations of provinces in France and Spain. . . . 39
A.13 A spider chart showing user ratings for different phone brands 39
A.14 A tree map showcasing the distribution of airports across different cities highlighting

the variation in elevation. 40
A.15 A sunburst graph showcasing the distribution of airports across different cities high-

lighting the variation in elevation. 40
A.16 A hierarchy tree showcasing the distribution of airports across different cities. . . . 40
A.17 A coloured hierarchy tree showcasing the distribution of airports across different cities. 40
A.18 A circle packing graph showcasing the distribution of airports across different cities. 40
A.19 A coloured circle packing graph showcasing the distribution of airports across dif-

ferent cities. 40
A.20 A sankey diagram of all countries whose areas span across more than one continent. 41
A.21 A network chart depicting the connections between neighbouring countries that

share borders. 41
A.22 A chord diagram showcasing the connections between neighbouring countries whose

border length is greater than 2500 kilometers. 41
A.23 A heatmap visualising the length of borders between neighbouring countries. . . . 41

5

List of Tables

2.1 Patterns and corresponding visualisations . 11

4.1 Basic Entity Visualisations . 23
4.2 Weak Entity Visualisations . 24
4.3 One-Many Relationship Visualisations . 25
4.4 Many-Many Relationship and Reflexive Relationship Visualisations 26

6

Chapter 1

Introduction

1.1 Motivation

Data visualisation plays an important role in data analysis. Visual representations of complex
data sets such as graphs, charts and maps, aid individuals to comprehend insights into a data
set. Data visualisation also helps in decision-making, by revealing patterns and trends of the raw
data. Colours and shapes in visualisations are effective and direct language that can be used for
communication.

Modern data visualisation tools such as Tableau [3] and Google Chart [4] are highly capable
of fulfilling the needs of most users. They are very mature in terms of user-friendly interfaces
and diverse visualisation options. They are also highly flexible, giving users more options to
explore their data. However, an excessive degree of freedom can sometimes result in inappropriate
visualisations. The underlying reason is that current data visualisation tools are not able to fully
make use of the schema information of the data, resulting in a lack of higher-level abstraction in
the process of data selection and visualisation generation.

1.2 Example

country

code
name area

part
of

province

name
area population

1:1

0:N

in

city

name
area population

1:1

0:N

serves airport iata_code
name
elevation

latitude
longitude

0:N

1:1

encompasses

percent

continent

name

1:2

0:N

borders
0:N0:N

length

economy

inflation?
gdp? unemployment?

Figure 1.1: ER schema of a fragment of the Mondial database [1]

7

Figure 1.1 is the ER schema of a fragment of the Mondial database [1], focusing on country-
related information.

The relationship borders stores information about the borders between adjacent countries.
The weak entity province captures data related to provinces within a country and the weak entity
city stores information regarding cities within a province. The airports entity provides details
about airports located in cities. In certain cases, countries may have additional data concerning
their economic situation, which is stored in the subset entity economy. The optional attributes
within economy allow for the recording of various economic indicators. Lastly, the encompasses
relationship establishes the connection between countries and continents, with the percent at-
tribute denoting the proportion of a country’s land area that belongs to each respective continent.

Let’s consider the relationship between countries and the continents, specifically focusing on the
cardinality constraint of 1:2. This constraint indicates that certain countries, such as Russia and
Turkey, span across two continents because of their geographical positions. In Tableau, users are
given the option to visualise this relationship using a tree map based on countries’ areas. Each
country is represented by a rectangle, and the size of each rectangle corresponds to the country’s
area, as shown in figure 1.2. However, it can be observed that Russia appeared twice in both Asia
and Europe, which results in a significant increase in the total area of Europe. This tree map
misleads users that the area of Europe is comparable to that of Africa and significantly larger than
Australia. This particular visualisation is inaccurate and falls short of meeting user expectations.

Figure 1.2: Inappropriate tree map by Tableau

To address this issue, a user may need to apply filters to the dataset to make the visualisation
better aligned with their requirements. For example, filtering the data by limiting countries where
more than 50% of a country’s area lies within a specific continent. By doing so, each country is
guaranteed to be related to one continent (i.e. one-many relationship). Alternatively, a user may
explore other visualisations that offer a more suitable representation of the current relationship
between countries and continents (i.e. many-many relationship), such as a sankey diagram.

The reason why inappropriate visualisations are often generated by Tableau and other visuali-
sation tools is that they fail to capture the full schema knowledge, requiring users to manually
select data and choose visual encodings from a wide range of options. As a result, users may strug-
gle to comprehend the underlying meaning of the data and the options of visualisations available.
This situation can often lead to undesired visualisation results.

In this project, we aim to introduce a data visualisation solution that utilises the schema infor-
mation of the databases. We will achieve this by using a set of visualisation schema patterns
which categorise commonly-used data visualisations into distinct groups. By mapping the data
schema to these patterns, we can guide users in selecting the most suitable visualisations for their
data.

8

1.3 Contributions
The main goal of this project is to simplify the process of selecting a suitable visualisation by
providing users with a more focused set of options. By utilising the full knowledge of the concep-
tual schema of the data source, this application guides users in choosing visualisations that are
appropriate for their data. This is done by employing pattern matching to align data schema with
visualisation schema patterns.

In addition, our objective is to introduce a data visualisation tool that enables users to gain a
deeper understanding of their data and facilitate exploration. This application offers a wide range
of visualisation possibilities and enables users to interactively explore and fulfil their information-
seeking needs through filtering.

Furthermore, we have explored expanding and implementing the additional visualisations for
specific schema patterns, providing users with a broader selection of suitable visualisations for their
data.

9

Chapter 2

Background

2.1 Grammar of Graphics
The Grammar of Graphics [5] is a conceptual framework for describing and creating data visual-
isations. It provides a systematic approach to understanding and constructing visualisations by
breaking them down into seven fundamental components.

Figure 2.1 shows a data flow diagram consisting of seven classes. These classes represent the
sequence of mappings required to generate a statistical graphic from a dataset. The data flow
architecture implies that these subtasks must be executed in the specified order to ensure the
production of meaningful graphics. Any deviation from this prescribed order can lead to the
creation of meaningless graphics.

Figure 2.1: The data flow diagram for producing meaningful graphics

2.2 Visualisation Schema Patterns
ER (Entity-Relationship) schemas are typically employed as conceptual models before implement-
ing actual database systems. The ER schema not only captures the structure of data but also
incorporates details regarding the relationships between entities and mapping cardinality between
tables.

There are five ER schema patterns in recent research [6, 7] by P. McBrien and A. Poulovas-
silis, accompanied by their corresponding visualisations. Figure 2.2 and table 2.1 illustrate those
patterns and visualisations of which the level of complexity increases successively.

Note that the Reflexive Relationship pattern can be regarded as a special case of the Many-Many
Relationship pattern. Consequently, the visualisations corresponding to the Reflexive Relationship
can be considered a subset of those associated with the Many-Many Relationship. Additionally, it is
worth noting that reflexive relationships can exist in both one-many and many-many configurations.
However, the latest work has exclusively focused on the many-many case.

Figure 2.3 shows an example that can be mapped to the One-Many Relationship pattern.
One-many relationships are particularly well-suited for visualisations that exhibit a hierarchical
structure. For instance, we can create a hierarchy tree, where nodes represent child-entity
instances (airport) connected by lines to parent-entity instances (city).

10

Figure 2.2: Visualisation Schema Patterns for Data Visualisation

Visualisation Schema Patterns Corresponding Visualisastions

Basic Entity
Bar Chart
Calendar Chart
Scatter Diagram

Bubble Chart
Choropleth Map
Word Cloud

Weak Entity Line Chart
Spider Chart

Stacked Bar Chart
Grouped Bar Chart

One-Many Relationship Hierarchy Tree
Circle Packing Tree Map

Many-Many Relationship Sankey Diagram
Network Chart

Chord Diagram
Heatmap

Reflexive Relationship Network Chart Chord Diagram
Heatmap

Table 2.1: Patterns and corresponding visualisations

city

name

serves airport

iata_code

0:N

1:1

Figure 2.3: ER schema of the one-many relationship between airport and city

The reason why the example from Section 1.2 fails to meet user expectations is that the rela-
tionship between country and continent is many-many, which is incompatible with tree maps.
However, by applying filters to the data, such as selecting countries and continents where more
than 50% of a country’s area lies within a specific continent, we can transform the relationship be-
tween country and continent from many-many to one-many. This is illustrated in figure 2.4. In
this case, the dataset is suitable for those visualisations under the One-Many Relationship pattern.

An alternative approach to visualise data with many-many relationships using one-many vi-
sualizations is through a process known as denormalization. Denormalization involves creating
a new weak entity called encompasses_denormalised, which includes the percent attribute.
This transformation retains all the information present in the original schema while enabling the

11

Figure 2.4: transforming a many-many relationship to a one-many relationship by filtering

generation of meaningful one-many visualizations. The denormalisation transformation is illus-
trated in figure 2.5.

encompasses
denormalised

code percent

encompasses continent

name

1:1

0:N

Figure 2.5: denormalisation transformation

12

Chapter 3

Related Work

3.1 Reverse Engineering
Databases most commonly use the relational database to store data. This project is delivered at
the ER level instead of the relational level, hence reverse engineering from relational schemas to
ER schemas is the initial step to enable the utilisation of the set of visualisation schema patterns.

One of the primary objectives of the database reverse engineering process is to enhance the
understanding of data semantics. This process becomes particularly crucial for legacy databases
where knowledge of data semantics has been lost over time. By undertaking reverse engineering,
valuable insights can be gained, enabling a deeper comprehension of the underlying data and its
meaning.

The forward engineering process from an ER schema to a relational model is relatively straight-
forward. Database designers can systematically convert the ER schema into a set of relational ta-
bles, ensuring data integrity and preserving the relationships between entities. However, reversing
this process is no trivial task due to the substantial loss of information that occurs during the
transformation from ER schemas to relational models.

3.1.1 Research areas
An approach proposed by Premerlani and Blaha [8] is a seven-stage process, employing an object-
oriented model and adopting the Object Modeling Technique notation. The process places par-
ticular emphasis on analysing candidate keys rather than solely focusing on primary keys. The
algorithm successfully identifies entities with relationships and their cardinalities.

Another approach by Andersson [9] uses his node rules, link rules and refinement rules
to extract an extended ER model called the ERC+ model. This enhanced model incorporates
multivalued and complex objects, and multi-instantiation. Node rules identify entities while link
rules identify relationships. To achieve the final translation into the ERC+ model, refinement rules
are applied to both nodes and links.
However, both methods do not effectively capture the necessary information to distinguish between
strong and weak entities.

The approach proposed by Petit et al [2] builds upon previous methods, and effectively identi-
fies weak entities and is-a links. The process is divided into two key steps:

1. Eliciting the data semantics from the existing system.
2. Expressing the extracted semantics with a high level data model.

The first step is crucial as it involves extracting information on functional dependencies that
influence the way data could be structured. Then that information is used in the restruct algorithm,
where a 1NF relational schema is restructed to a 3NF relational schema, that can be represented
by an EER schema.

An example demonstrated in the paper is shown as figure 3.1, where (a) represents the original
relational schema, while (b) represents the schema after applying the restruct algorithm. In the
schema representations, relation names begin with an upper-case letter, underlined attributes

13

denote keys, and emphasized attributes indicate not-null constraints. The resulting EER schema
is shown in figure 3.2, where weak entities are denoted by double boxes, and is-a links indicated
by arrows with two pointers at their head.

Person (id , name , s t r e e t , number , z ip−code , s t a t e)
HEmployee (no, data , s a l a r y)
Department (dep , emp , s k i l l , location , p ro j)
Assignment (emp, dep, proj , date , p ro j e c t −name)

(a) Original relational schema [2]: p.221

Person (id , name , s t r e e t , number , z ip−code , c i t y)
HEmployee (no, date , s a l a r y)
Department (dep , emp , location)
Assignment (emp, dep, proj , date)
Employee (no)
Ass−Dept (dep)
Other−Dept (dep)
Manager (emp , s k i l l , p ro j)
Pro j e c t (proj , p ro j e c t −name)

(b) Relational schema after restruction [2]:p.225

Figure 3.1: Illustration of the restruct algorithm

Figure 3.2: The resulting EER schema [2]:p.226

3.1.2 Existing solution

The AmazingER [10] is a library, recently developed by a group of students from Imperial College,
that offers a comprehensive set of features for ER modelling, including the ability to reverse engineer
relational databases into ER schemas. By using the database metadata, it generates Java-based ER
schema objects. It identifies entities and relationships, and the associated cardinalities. Moreover,
it successfully identifies weak-entity relationships and subset entities.

14

However, the limitation arises when dealing with reflexive relationships. The exceptions defined
in the code indicate that there cannot exist more than one relationship edge between the same
relationship and entity objects. As a result, reflexive relationships cannot be identified by the
current implementation of the library.

Additionally, it fails to handle the weak entity city in figure 1.1. The city is a weak entity
with respect to province, and province is a weak entity with respect to country. The reason
AmazingER fails to parse city is that every entity is categorised into an absolute entity type, either
strong or weak. Hence city as the child entity is not allowed to have a weak-entity relationship
with another weak entity, specifically the province entity.

Figure 3.3 is the result of the reverse engineering of the relationship between country and conti-
nent in figure 1.1 in JSON format. Notice the cardinality between country and encompasses is
inaccurately translated to "ZeroToMany" instead of "OneToMany" because of the loss of informa-
tion in the forward engineering process. However, this difference does not affect the overall schema
to be a many-many relationship.

{"schema":{
"id" : 1,
"name" : "reverseEng",
"entityList" : [{
"id" : 2,
"name" : "country",
"entityType" : "STRONG",
"attributeList" : [...]

}, {
"id" : 3,
"name" : "continent",
"entityType" : "STRONG",
"attributeList" : [...]

}],
"relationshipList" : [{
"id" : 4,
"name" : "encompasses",
"attributeList" : [{
"id" : 5,
"name" : "percentage",
"belongObjID" : 4,
"belongObjType" : "RELATIONSHIP",
"isPrimary" : false,
"attributeType" : 1,

}],
"edgeList" : [{
"id" : 6,
"relationshipID" : 4,
"belongObjID" : 2,
"belongObjType" : "ENTITY",
"belongObjName" : "country",
"cardinality" : "ZeroToMany"

}, {
"id" : 7,
"relationshipID" : 4,
"belongObjID" : 3,
"belongObjType" : "ENTITY",
"belongObjName" : "continent",
"cardinality" : "ZeroToMany"

}]
}]

}}

Figure 3.3: ER schema in JSON format generate by AmazingER

15

3.2 Visualisation Solutions

3.2.1 Tableau
Tableau[3] is a powerful and widely used visualisation tool, with a user-friendly interface and
a wide range of visualisation options. It provides various ways that allow users to connect to
their data sources, including file format, SQL databases and cloud data. Additionally, Tableau
presents the capability to blend and join data from multiple sources, allowing domain experts to
delve deeply into their data, conducting a thorough analysis. Furthermore, Tableau facilitates
collaboration and sharing functionalities, making it easier for business-oriented users to effectively
communicate insights. It has recently integrated artificial intelligence within the software, enabling
users to use natural language to generate desired visualisations.

Tableau categorizes data types into dimensions and measures and these classifications are
denoted by specific icons next to the corresponding attributes. This approach helps users to better
understand their data and facilitates the selection of appropriate visualisations. Similar concepts
have been incorporated into this project as well, as shown in figure 3.4.

(a) visual aid from Tableau (b) visual aid in this project

Figure 3.4: Datatype visual aid comparison

However, mastering Tableau’s more advanced features and functionalities can require a learning
curve. It takes time to become proficient in this tool to its full potential. Particularly for users with
limited data visualisation experience, there is a possibility of creating inappropriate visualisations,
as shown in example 1.2.

3.2.2 AutoViz
AutoViz[11] is an automatic visualisation tool based on machine learning. By simply providing
a file in CSV, txt or JSON format, AutoViz produces a set of visualisations determined to be
relevant by its algorithm. AutoViz is a Python package, and the visualisation stage is achievable
through a single line of code. Its characteristics make it well-suited for users who are not familiar
with their data and just want a quick exploration by plugging in their data.

AutoViz’s primary drawback lies in its limited flexibility. It lacks a dedicated user interface,
limiting the interactivity for data exploration beyond the use of Python commands. It does not
guide users in choosing appropriate visualisations for their data. Additionally, it solely accepts file
inputs and is not capable of connecting to databases.

Overall, AutoViz is not suitable for domain experts who are familiar with their data and seek
to conduct extensive exploratory analysis.

3.2.3 SPSS Statistics
SPSS Statistics is a software package developed by IBM that provides advanced statistical analy-
sis and data management capabilities. Under the hood, graphs are created by the GPL, which is a
language based on The Grammar of Graphics [5]. SPSS Statistics is widely used by researchers for
hypothesis testing and predictive analytics. Similar to Tableau, mastering the advanced features
of SPSS Statistics may require some time and effort to overcome the learning curve.

To summarise, existing visualisation solutions, regardless of the graph grammar they follow, gen-
erate proper graphs, but they are not necessarily meaningful. By introducing visualisation schema

16

patterns to the application, more information can be utilised to create relevant and meaningful
visualisations that align with the user’s data.

3.3 Visualisation Libraries

3.3.1 ggplot2
ggplot2 [12] is a popular data visualisation package in the R programming language. It is built
upon the principle of a layered grammar of graphics[13], which is an extension of the traditional
grammar of graphics. This package enables users to build complex and layered visualisations by
combining components such as data, aesthetics, geometric objects, scales and facets. In ggplot2,
visualisations are created by adding layers, where each layer represents different components, which
makes it easy to modify and customise visualisations.

However, it is important to note that ggplot2 is primarily designed for static visualisations and
does not offer interactivity features. Additionally, compatibility can be an issue. While ggplot2 is
widely used in the R ecosystem, it may not always work well with other programming languages
or tools.

3.3.2 D3
D3 (Data-Driven Documents) [14] is a JavaScript library for creating interactive data visualisation
using web standards. With D3, users have complete control over the visual appearance and be-
haviour of their visualizations, because it uses the DOM (Document Object Model) to manipulate
and transform elements on a web page. In addition, D3 provides a large set of tools for data
transformation and manipulation. Operations such as filtering and sorting can be performed to
prepare for the visualisation stage. D3 also provides animation and interactive behaviour to the
visualisation, enabling users to better explore and interact with the data.

On the other hand, the trade-off for the flexibility and advanced feature that D3 provides is
the steep learning curve, particularly for users who are new to JavaScript and web development.

3.3.3 Vega
Vega [15] is a visualisation grammar and open-source framework for creating expressive data
visualisations. It uses D3 under the hood for various tasks such as handling data binding and
rendering SVG graphics. While D3 primarily focuses on low-level data manipulation and DOM
manipulation, Vega provides a higher-level abstractions for compositions of visual elements.

Similarly, Vega-Lite[16] is a high-level grammar of interactive graphics that combines the
principles of the traditional grammar of graphics with interactive features. Vega and Vega-Lite are
often used together with D3 to enhance the efficiency of visualisation development.

17

Chapter 4

Design

4.1 Overview

Start

User inputs Database Info

Connect to the Database

Reverse Engineering

User selects desired attributes
and filtering conditions

Schema Pattern Matching

Recommendation for Visualisations

User selects from suggested visualizations

Visualization Generation

Output the visualization

Stop

Figure 4.1: Flowchart of the process from user inputs to a visualisation

18

In figure 4.1, the flowchart illustrates the step-by-step process of generating a visualisation
from the beginning, and how a user interacts with the application. In this chapter, our focus will
primarily be on the processes under the hood, represented by the yellow rectangles in the figure.
The objective is to guide users through the whole visualisation process, with the help of schema
information of the data.

4.2 Connect to the Database
This project primarily focuses on visualisation on data from relational databases, because the
relational schema provides valuable information which is processed and utilised in later stages of
the project. On the other hand, data in file formats offer limited insights into the underlying
schema structure.

To ensure wide applicability and usability, it is important to support popular relational database
management systems such as MySQL, PostgreSQL, Oracle, and others. This enables users to
seamlessly connect and visualise data from various databases commonly used in different domains.

4.2.1 Ethical issues
Ethical issues are important in any project that involves database connections. This project focuses
on visualising data from relational databases. It naturally entails the collection of certain personal
data, such as account information related to the target database. However, it’s important to
emphasise that although our application has access to the data, all operations in the database are
in a read-only mode.

To maintain data integrity and privacy, any potential data refactoring is performed locally
by creating a separate copy, thereby guaranteeing the preservation of the original dataset. The
collected personal data is solely used for user authentication purposes, ensuring secure access to the
database. We emphasise that no personal information is stored in any format within this project,
and all collected data is deleted immediately when no longer required.

Our commitment is to provide users with a trusted and responsible data visualisation experi-
ence, upholding both legal and ethical standards throughout the project. We prioritise the protec-
tion of user privacy and adhere to applicable data protection regulations, ensuring that personal
data is handled properly.

4.3 Reverse Engineering
This project is delivered at the ER level instead of the relational level, hence we need this step to
perform the transformation from a relational schema to an ER schema. The resulting ER schema
information is then stored for further analysis. To ensure accurate pattern matching with the visu-
alisation schema patterns in figure 2.2, a comprehensive reverse engineering algorithm is required.
This algorithm should be able to identify entities with relationships and their cardinalities. It
should distinguish between strong and weak entities. Additionally, this algorithm should be able
to identify reflexive relationships. To showcase the level of correctness required from the reverse
engineering algorithm, we use the Mondial database [1] as an example.

Figure 4.2 displays the relational database schema in PostgreSQL for a fragment of the Mondial
database. Based on the metadata this schema provides, it is expected that the reverse engineering
algorithm successfully identifies the province table as a weak entity with respect to country and
the city table as a weak entity with respect to province. It should also recognise the one-many
relationship between airport and city. In addition, the encompasses table should be recognised
as a many-many relationship between country and continent, and borders table recognised as
a reflexive relationship. Finally, economy should be recognised as a subset of country. These
expectations are reflected as an ER schema illustrated in figure 1.1.

19

CREATE TABLE country (
name VARCHAR(32) NOT NULL CONSTRAINT country_name_ck UNIQUE,
code VARCHAR(4) CONSTRAINT country_pk PRIMARY KEY,
area NUMERIC(10 , 2) NOT NULL CONSTRAINT country_area_range CHECK (area >=

0)) ;

(a) relational schema of the country table

CREATE TABLE prov ince (
name VARCHAR(48) CONSTRAINT province_name NOT NULL,
country VARCHAR(4) CONSTRAINT province_country NOT NULL,
populat ion INTEGER CONSTRAINT province_population_range

CHECK (populat ion >= 0) ,
area INTEGER CONSTRAINT province_area_range CHECK (area >= 0) ,
CONSTRAINT province_pk PRIMARY KEY (name , country) ,
CONSTRAINT province_country_we FOREIGN KEY (country) REFERENCES country) ;

(b) relational schema of the province table

CREATE TABLE c i t y (
name VARCHAR(48) NOT NULL,
country VARCHAR(4) NOT NULL,
p rov ince VARCHAR(48) NOT NULL,
populat ion DECIMAL NULL,
CONSTRAINT city_populat ion_range CHECK (populat ion >=0) ,
e l e v a t i o n INTEGER,
CONSTRAINT city_pk PRIMARY KEY (name , province , country) ,
CONSTRAINT city_province_we FOREIGN KEY (province , country) REFERENCES

prov ince) ;

(c) relational schema of the city table

CREATE TABLE a i r p o r t (
iata_code VARCHAR(3) PRIMARY KEY,
name VARCHAR(100) ,
country VARCHAR(4) ,
c i t y VARCHAR(48) ,
prov ince VARCHAR(48) ,
l a t i t u d e NUMERIC(5 , 2) NOT NULL
CONSTRAINT a i rport_lat i tude_range CHECK (l a t i t u d e BETWEEN −90 AND 90) ,
l ong i tude NUMERIC(5 , 2) NOT NULL
CONSTRAINT a i rport_longt i tude_range CHECK (l ong i tude BETWEEN −180 AND 180) ,
e l e v a t i o n INTEGER,
gmt_offset INTEGER,
CONSTRAINT a i rport_c i ty_fk
FOREIGN KEY (c i ty , province , country) REFERENCES c i t y) ;

(d) relational schema of the airport table

CREATE TABLE encompasses (
country VARCHAR(4) NOT NULL
CONSTRAINT encompasses_country_fk REFERENCES country ,
cont inent VARCHAR(20) NOT NULL
CONSTRAINT encompasses_continent_fk REFERENCES cont inent ,
percentage NUMERIC(10 , 2) NOT NULL
CONSTRAINT encompasses_percentage_range CHECK (percentage BETWEEN 0 AND

100) ,
CONSTRAINT encompasses_pk PRIMARY KEY (country , cont inent)) ;

(e) relational schema of the encompasses table

Figure 4.2: Relational database schema of a fragment of the Mondial database [1]

20

CREATE TABLE cont inent (
name VARCHAR(20) CONSTRAINT continent_pk PRIMARY KEY, area NUMERIC

(10 ,2) NOT NULL) ;

(f) relational schema of the continent table

CREATE TABLE borders (
country1 VARCHAR(4) CONSTRAINT border_country_a_fk REFERENCES country

,
country2 VARCHAR(4) CONSTRAINT border_country_b_fk REFERENCES country

,
l ength NUMERIC(10 ,2) NOT NULL CONSTRAINT border_length CHECK (l ength

> 0) ,
CONSTRAINT border_pk PRIMARY KEY (country1 , country2)) ;

(g) relational schema of the borders table

CREATE TABLE economy (
country VARCHAR(4) CONSTRAINT economy_pk PRIMARY KEY,
gdp INT CONSTRAINT economy_gdp CHECK (gdp>=0) ,
i n f l a t i o n NUMERIC(5 , 2) ,
unemployment NUMERIC(5 , 2) ,
CONSTRAINT economy_isa FOREIGN KEY (country) REFERENCES country) ;

(h) relational schema of the economy table

Figure 4.2: Relational database schema of a fragment of the Mondial database [1] (cont.)

4.4 Schema Pattern Matching

4.4.1 Pattern Characteristics
Once the user has selected the attributes to be visualised, the next step is to map the selection
to one of the five visualisation schema patterns shown in figure 2.2. Utilising the ER schema
acquired from the previous step, the pattern-matching algorithm examines the characteristics of
each pattern to distinguish between them.

• The Basic Entity: basic entities are fundamental building blocks of ER models with their
own attributes. They do not depend on any other entities for their existence.

• The Weak Entity: a weak entity refers to an entity that cannot be uniquely identified by its
own attributes alone. Instead, it relies on a related strong entity to establish its identity. In
a weak-entity relationship, the weak entity is considered the dependent or the child entity,
and the strong entity is the parent entity.

• The One-Many Relationship: one-many relationships describe a relationship between two
entities where one entity can have multiple instances associated with it, while the other
entity has only one instance. Note that weak entities also have one-many relationships with
their strong entities. However, we do not map weak entities to the One-Many Relationship
pattern.

• The Many-Many Relationship: many-many relationships describe a relationship between two
entities where each entity can have multiple instances associated with multiple instances of
the other entity.

• The Reflexive Relationship: a reflexive relationship refers to a relationship that exists between
instances of the same entity. In other words, it represents a connection or association within
a single entity. Note that in the patterns, the Reflexive Relationship is many-many.

It is important to note that in the Many-Many Relationship and Reflexive Relationship models,
the user-selected attributes are from the table representing the relationship itself rather than from
any individual entity as shown in figure 2.2.

21

4.4.2 Handling Subset Entities

Subset entities are derived or specialised from another entity in the ER model. They represent a
subset of the attributes and relationships of the parent entity. When visualising subset entities,
they can be treated as basic entities, but they should inherit the key attribute from the parent
entity. An example is shown in figure 4.3.

country

code population

economy

gdp

(a) example of a subset

country

code
gdp population

(b) mapped to a basic entity

Figure 4.3: Transforming a subset

4.5 Recommendation for Visualisations

There are various visualisations suitable for each model, as shown in table 2.1. Once we have
successfully matched the user selection to one of the visualisation schema patterns, we proceed
with a detailed analysis that takes into account the number of attributes and their types.

In the context of visualisation, graphical elements are classified as marks (such as points and
lines) or channels (including colour, shape, texture and more). Each instance of an entity in the
database can be represented by one or more graphical elements. The attribute value of an entity
or a relationship is associated with a dimension of visualisation. By taking a similar definition in
[6], attribute values can be classified into two major types of dimensions.

• Discrete: discrete dimensions consist of a relatively small number of distinct values, which
may or may not have a natural ordering. These dimensions are utilised to choose a mark
or to vary a channel of a mark in a visualisation. For instance, the code attribute of the
country entity is an example of discrete dimensions without natural ordering.

• Scalar: scalar dimensions have a significant number of distinct values with a natural numeric
ordering, such as integers, floats, or dates. These dimensions are represented by a channel
associated with a mark in a visualisation. An example would be the area attribute of the
country entity.

Visualisations suitable for each schema pattern are explained in detail below. Key cardinalities
are used to indicate the lower and upper bounds of entries within an entity, ensuring optimal
readability of the visualisation.

4.5.1 Basic Entity Visualisations

• Bar Chart: each bar in a bar chart represents an individual instance of the entity, and the
length of each bar is determined by a scalar attribute.

• Pie Chart: each section of a pie chart represents an individual instance of the entity, and
the size of each section is determined by a scalar attribute, proportionate to the total value.

• Calendar Chart: a calendar chart represents instances of the entity based on a tempo-
ral scalar attribute. The intensity of colour in the chart can represent an additional scalar
attribute and a colour legend should be provided alongside the calendar chart for clear inter-
pretation.

• Scatter Diagram: in a scatter diagram, each point represents an individual instance of
the entity. The horizontal and vertical axes represent two scalar attributes. Optionally, the
colour of each point can represent an additional discrete attribute.

22

• Bubble Chart: similar to a scatter diagram, each bubble in a bubble chart represents
an individual instance of the entity. The horizontal and vertical axes represent two scalar
attributes. Additionally, a third dimension represents the size of the bubble. The colour of
each bubble can represent an optional discrete attribute.

• Choropleth Map: in a choropleth map, each region represents an individual instance of
the entity. The key attribute of the entity should be interpretable as a geographical region,
which should be discrete (e.g. country names/codes). The intensity of colour in each region
represents a scalar attribute associated with the entity.

• Word Cloud: in word clouds, the key attribute of the entity should be interpretable as a
discrete lexical domain. The size of each word represents a scalar attribute associated with
the entity.

Visualistaion
Entity
key
cardinality

Mandotory
scalar
attributes

Optional
discrete
attributes

Special
requirement

Bar Chart 1..100 1 - -
Pie Chart 1..20 1 - -

Calendar Chart 1..* 1 - scalar attribute
should be temporal

Scatter Diagram 1..* 2 1 -
Bubble Chart 1..* 3 1 -

Choropleth Map 1..* 1 - key attribute
should be geographical

Word Cloud 1..* 1 1 key attribute
should be lexical

Table 4.1: Basic Entity Visualisations

For example, the airport entity in figure 1.1 can be matched to a Basic Entity, with the
key attribute iata_code. A scatter diagram can be produced with longitude against latitude,
shown in figure A.4. More examples of Basic Entity visualisations can be found in the Appendix
section:

Visualisation Example
Bar Chart A.1
Pie Chart A.2
Calendar Chart A.3
Scatter Diagram A.4 and A.5
Bubble Chart A.6 and A.7
Choropleth Map A.8
Word Cloud A.9

4.5.2 Weak Entity Visualisations

For certain visualisations under the Weak Entity pattern, we require data to be complete. This
means that the set of values that appears for the key attribute of the child entity must be con-
sistent across all values of the key attribute of the parent entity. For example, consider the weak
entity country_population which records the history of populations for country. The data in
country_population is complete if the years of the population recorded for each country remain
consistent across the entire dataset. This example is illustrated in figure 4.4.

• Line Chart: in a line chart each individual line represents an individual instance of the
parent entity. The horizontal axis represents the key attribute of the child entity, which
should be scalar. The vertical axis represents a scalar attribute associated with the child
entity.

23

country

code

part
of

country
population

year population

1:1

0:N

(a) ER schema of country_population and coun-
try in Mondial database

country year population
J 2000 125714674
J 2005 127767994
J 2010 128057352
MEX 2000 97483412
MEX 2005 103263388
MEX 2010 112336538
KIR 2000 84494
KIR 2005 92533
KIR 2010 103058

(b) values of year are complete with re-
spect to country_population

Figure 4.4: An example of complete dataset

• Stacked Bar Chart: in a stacked bar chart, the key attribute of the parent entity is
represented by an individual bar, and within each bar, individual sections represent the key
attribute of the child entity. The length of each section is determined by a scalar attribute
associated with the child entity. In stacked bar charts, dataset completeness is required.

• Grouped Bar Chart: similar to stacked bar charts, except that the key attribute of the
parent entity is represented by a grouped bar chart consisting of multiple bars instead of a
single bar with multiple sections.

• Spider Chart: in a spider chart, the key attribute of the parent entity is represented by
individual rings, while each spoke represents the key attribute of the child entity. The length
of individual spokes reflects a scalar attribute associated with the weak entity. In spider
charts, dataset completeness is required.

Visualistaion
Parent
key
cardinality

Child
key
cardinality

Mandotory
scalar
attributes

Optional
discrete
attributes

Dataset
completeness

Line Chart 1..20 1..* 1 - no
Stacked Bar Chart 1..20 1..20 1 - yes
Grouped Bar Chart 1..20 1..20 1 - no
Spider Chart 3..20 1..20 1 - yes

Table 4.2: Weak Entity Visualisations

An example of a matched Weak Entity in figure 1.1 is province. A grouped bar chart can be
produced to compare the populations of provinces between countries. Figure A.12 illustrates a
grouped bar chart comparing the populations of provinces in France and Spain. More examples of
Weak Entity visualisations can be found in the Appendix section:

Visualisation Example
Line Chat A.10
Stacked Bar Chart A.11
Grouped Bar Chart A.12
Spider Chart A.13

4.5.3 One-Many Relationship Visualisations

• Tree Map: in a tree map, each instance of the parent entity is represented by a large
rectangle that is divided into smaller rectangles to represent instances of the child entity.
The size of smaller rectangles is proportional to the value of a scalar attribute associated
with the child entity.

24

• Hierarchy Tree: instances of the parent entity are visualised as nodes with connected lines
representing the hierarchical relationship to instances of the child entity. Attributes are not
mandatory for this visualisation as its primary focus is to convey hierarchical information.
An optional discrete attribute can be used to colour nodes.

• Circle Packing: similar to tree maps, except that in circle packing, circles are used instead
of rectangles. An optional discrete attribute can be used to colour circles.

• Sunburst: in a sunburst graph, each instance of the parent entity is represented by a sector
of the inner circle, and instances of the child entity are represented by sectors of the outer
circle. The size of each sector represents the proportion of the corresponding scalar attribute.

Visualistaion
Parent
key
cardinality

Child
key
cardinality
(per parent key)

Mandotory
scalar
attributes

Optional
discrete
attributes

Tree Map 1..100 1..100 1 -
Hierarchy Tree 1..100 1..100 - 1
Circle Packing 1..100 1..100 1 1
Sunburst 1..100 1..100 1 -

Table 4.3: One-Many Relationship Visualisations

In figure 1.1 the airport is an example of having a one-many relationship with city. To visually
represent this hierarchical relationship, a tree map can be generated, showcasing the distribution of
airports across different cities, with the elevaltion attribute. This is shown in figure A.14 for the
cities of New York, Moskva and London. More examples of One-Many Relationship visualisations
can be found in the Appendix section:

Visualisation Example
Tree Map A.14
Hierarchy Tree A.16 and A.17
Circle Packing A.18 and A.19
Sunburst A.15

4.5.4 Many-Many Relationship Visualisations
• Sankey Diagram: in a sankey diagram, elements on the left-hand side represent instances of

one entity, while elements on the right-hand side represent instances of the other entity. The
width of the flow connecting these elements on different sides represents a scalar dimension
associated with the relationship.

• Network Chart: in a network chart, instances of entities are represented by nodes, and
the connected edges depict the network of relationships between the entities. Similar to
hierarchy trees, network charts primarily focus on showcasing relationships between entities,
and therefore attributes are not mandatory for this visualisation.

• Chord Diagram: in a chord diagram, instances of entities are represented by arcs or seg-
ments arranged around a central circle. The width of chords that link pairs of arcs represents
a scalar dimension associated with the relationship.

• Heatmap: in a heatmap, instances of entities are represented by cells of a matrix. The inten-
sity of the colours of the cells represents a scalar dimension associated with the relationship,
and a colour legend should be provided alongside the heatmap for clear interpretation.

In figure 1.1, the relationship between country and continent is mapped to the Many-Many
Relationship pattern. Based on the attribute percent from the relationship encompasses, we
can effectively illustrate this relationship using a sankey diagram. Figure A.20 shows a sankey of
all countries whose areas span across more than one continent.

25

4.5.5 Reflexive Relationship Visualisations
As mentioned previously, visualisations that correspond to the Reflexive Relationship case are a
subset of those suitable for the Many-Many Relationship.

Sankey diagrams are not appropriate for visualising reflexive relationship data because they
are primarily designed to represent directional information between different entities. Sankey
diagrams are commonly used to illustrate the flow from a resource to a target. In contrast,
reflexive relationships involve connections between instances of the same entity. Therefore, it
is not recommended to use sankey diagrams for visualising reflexive relationships.

Chord diagrams, on the other hand, are particularly well-suited for visualising reflexive re-
lationship data. In chord diagrams, the ribbons connecting the arcs on the circle represent the
relationships between instances of the same entity, highlighting the scalar attribute associated with
the relationship and provides a clear representation of the connections within the entity.

Heatmaps and network charts are generally suitable for visualising many-many relationships,
whether reflexive or not. They both provide informative representations of the connections between
entities.

Visualistaion
Entities’
key
cardinality

Mandotory
scalar
attributes

Optional
discrete
attributes

Reflexive
relationship
compatible

Sankey Diagram 1..20 1 - no
Network Chart 1..1000 - 1 yes
Chord Diagram 1..100 1 - yes
Heatmap 1..100 1 - yes

Table 4.4: Many-Many Relationship and Reflexive Relationship Visualisations

In figure 1.1, country has a reflexive relationship with itself, through borders. A chord
diagram can be produced to visualise this relationship, with the attribute length. Figure A.22
illustrates the borders relationship using a chord diagram, where the border length is greater than
2500 kilometres.

More examples of Many-Many Relationship and Reflexive Relationship visualisations can be
found in the Appendix section:

Visualisation Example
Sankey Diagram A.20
Network Chart A.21
Chord Diagram A.22
Heatmap A.23

4.6 Visualisation Generation
Once the user has selected a visualisation from the suggested list, the next step is to generate
the corresponding visualisation. There are many packages available that allow us to generate
visualisations directly. As developers, it is important to choose a package that offers sufficient
flexibility to accommodate optional attributes in the visualisation.

26

Chapter 5

Technical Implementation

In this section, we are going to talk about the detailed implementation of this project. The primary
focus of this project is to guide users in selecting the appropriate visualisations for their data. Hence
we are going to keep the user interface as clean and intuitive as possible, giving users visual aid in
using this application.

This project is designed as a web application, offering several advantages. From the user’s
standpoint, web applications provide easy access without the need for installations. They are
platform-independent, allowing users to access them from any device with a browser and an in-
ternet connection. From the developer’s point of view, web applications typically offer quicker
development cycles, benefiting from the personal developer experience gained through previous
projects that focused on web development. On the other hand, desktop applications typically
require more platform-specific knowledge and are restricted to particular operating systems.

5.1 Framework choices

There are several popular web application development frameworks to choose from, and for this
project, we have selected the Java-based Spring Boot framework. Spring Boot offers advantages
for web application development, including simplified configuration and a range of developer tools,
enabling developers to focus more on internal logic rather than infrastructure. Additionally, it
is well-suited for building microservices architecture. Standard web technologies like HTML and
JavaScript can be used for front-end development with Spring Boot, including popular JavaScript
packages.

5.2 Connect to the Database

To start the visualisation process, the user is required to provide details of the database they
wish to visualise. These details include the essential information such as the database type,
host address, port number, database name, username and password. Database types
supported in this project include PostgreSQL, MySQL, Oracle, SQL Server, DB2 and H2. The
provided information will be collected in JSON format, and transmitted to the back-end for further
processing. An example of the required database information is illustrated in figure 5.1.

{
"dbType": "postgresql",
"host": "localhost",
"port": "5432",
"dbName": "mondial",
"username": "yc1319",
"password": ""

}

Figure 5.1: Required database information in JSON format

27

The database connection and interaction are handled by JDBC [17], which is a widely used
Java API for database manipulation. It provides an effective way to interact with databases and
retrieve database metadata easily.

5.3 Reverse Engineering
There are several approaches to accomplish the reverse engineering process. One option is to
implement algorithms described in research papers such as [8, 9, 2]. Alternatively, existing tools
can be utilised to reduce development time. The AmazingER [10] is employed in this project to
generate ER schemas from the relational databases. The source code of AmazingER has been
made available to me with permission. This provides great flexibility to modify the code and
import the customised version as a library into this project. This allows for the incorporation of
specific features tailored to the project’s requirements.

For instance, the original version of AmazingER did not support multiple relationship edges
between the same relationship and entity objects, which is essential for parsing reflexive relation-
ships. To address this limitation, necessary modifications were made, enabling proper parsing of
reflexive relationships. The weak entity issue mentioned earlier was tackled by a colleague, who
afterwards shared his solution with me. The modified version can now successfully parse all tables
in the Mondial database shown in 4.2.

5.3.1 Handling User Selections

country

code

in airport

iata_code
latitude

longitude

0:N

1:1

parent

kp

R child

kc

a1
a2

0:N

1:1

Figure 5.2: one-many example of valid user selection

continent

name

encompasses

percent

country

code
area

population

0:N

1:2

E1

k1

R

a1

a2

E2

k2

0:N

0:N

Figure 5.3: example of invalid user selection

Once the relational database has been parsed into an ER schema, entities and relationships from
the resulting ER schema are displayed on a page, with their attributes listed as options. Users have

28

the freedom to choose attributes from at most one entity or relationship. However, it’s important
to note that the key attribute, if present, cannot be selected unless it belongs to the entity that has
a relationship to the entity from which attributes are being selected. This constraint is naturally
implied by visualisation schema patterns. An example is shown in figure 5.2, where a user has
selected the attribute latitude from the child entity airport in a one-many relationship. The user
has the option to select the key attribute code from the parent entity country or disregard it.
If it’s disregarded, this key attribute is processed and utilized automatically in the visualisation
process, minimising the need for manual selection and enhancing the efficiency of the visualisation.
Conversely, an example of an invalid selection is presented in figure 5.3. In the context of a many-
many relationship, the attributes are from the relationship itself, rather than from any individual
entity, as dictated by the model.

5.4 Pattern Matching to models

Figure 5.4: Functionalities of AmazingER used in pattern matching phase

The utilization of specific functionalities offered by the AmazingER is shown in figure 5.4,
which facilitates the implementation of pattern matching. In cases where the user makes an
invalid selection such as the example in figure 5.3, or encounters an ER model that is not one of
the visualisation schema patterns, we handle such scenarios by classifying them as the unknown
model type.

• Basic Entity: basic entities are the fundamental building blocks of ER models, if the user
selected attributes from a table which is an entity, and this entity is not a weak entity, we
classify it to the Basic Entity.

• Weak Entity: A weak entity is an entity that does not have a unique identifier on its own,
but it’s dependent on another entity. We identify it by checking if the EntityType is WEAK.

• One-Many-Relationship: A relationship that an entity on one side is related to multiple
entities on the other side. We identify it by checking whether there exists two Relation-
shipEdge, one with cardinality OneToMany (1:N) or ZeroToMany (0:N), the other with
cardinality OneToOne (1:1) or ZeroToOne (0:1) and connects the chosen entity table.

29

• Many-Many-Relationship: A relationship that multiple instances of an entity on one
side are related to multiple instances of an entity on the other side. We identify it by
checking whether there exists two RelationshipEdge, both with cardinality OneToMany (1:N)
or ZeroToMany (0:N). They need to connect different entities.

• Reflexive Relationship: A reflexive relationship occurs when an entity is related to it-
self. This is a special case of the Many-Many Relationship. We identify it by checking
whether there exists two different RelationshipEdge both with cardinality OneToMany (1:N)
or ZeroToMany (0:N), connecting the same entity.

It is important to mention that if the user selection is pattern matched to the One-Many
relationship model, it also matches the Basic Entity model and we should provide relevant visual-
isations under the Basic Entity pattern as options. This is because basic entities naturally exist
within one-many relationships. However, for the Many-Many Relationship and Reflexive Relation-
ship cases, we do not provide Basic Entity visualizations as options. In these scenarios, the selected
attributes should belong to the relationship table rather than the entity tables.

5.5 Retrieving Dataset from the Database
The dataset we need to retrieve is based on the user selection and JDBC is used to retrieve target
datasets from the user’s database using SQL queries. When no filters are applied, the SQL queries
are relatively simple, involving only the selection of attributes from a specific table. Table joins
are unnecessary since all required data of the attributes can be obtained from a single table. In
cases where the data of a key attribute from another table is needed, we can use the foreign key
information.

5.5.1 Filtering
Users can optionally apply filters to their data. Filtering options are from tables that have a
foreign key relation selected tables. These filtering options encompass attributes from entities and
relationships, which are also classified into discrete and scalar types. When dealing with discrete
attributes as filtering options, concrete data is presented as checkboxes for selection. Scalar at-
tributes are facilitated by a range slider, allowing the user to define the desired minimum and
maximum values for the attribute. There is no limit to how many filter conditions are applied.

When filters are applied, we perform INNER JOIN operations with those related tables, and
the filtering conditions are specified in the WHERE clause of the SQL queries. AND is used to
connect each filter condition. In a discrete filter condition, each distinct discrete value is connected
with an OR, and in a scalar filter condition, values are bounded by >= and <= signs.

An example SQL query of filtering countries in Europe and Asia, with a population between
20 million and 50 million is:
SELECT country.code, country.population FROM country INNER JOIN encompasses ON coun-
try.code=encompasses.country INNER JOIN continent ON encompasses.continent=continent.name
WHERE (continent.name=’Europe’ OR continent.name=’Asia’) AND (country.population>= 20000000
AND country.population<=50000000)

5.6 Data Type Classfication
In order for the dataset to fit visualisations, we need to classify SQL data types into data types to
meet the requirements. In this project, we have classified data types into three main categories:
Numerical, Temporal, and Lexical.

• Numerical: data values that have a relatively large and continuous range, and have a natural
numeric ordering. Examples of SQL data types that fall into this category are INTEGER,
DOUBLE, NUMERIC etc.

• Temporal: data values that also have a natural numeric ordering, but are measured in time.
SQL data types such as DATE and TIMESTAMP are example of Temporal data types.

30

• Lexical: data values that represent discrete string values. Examples of SQL data types are
CHAR, VARCHAR, LONGVARCHAR etc.

It is important to note that the scalar dimension is maintained as Numerical ∪ Temporal data
types. However, we are not able to completely capture the definition of the discrete dimension
by SQL data types. While attribute values related to strings are commonly associated with the
discrete dimension, there are cases where attributes such as gmt_offset in the airport entity
have a numerical SQL data type but still belong to the discrete dimension. In this project, we
treat Discrete ≈ Lexical, and we recognise that our definition for discrete attributes is not perfect.

For choropleth maps, we don’t need an additional geographical data type. Instead, the discrete
data that matches a map of geographical names (from Natural Earth [18]) or codes will be presented
in the choropleth maps. However, if the data does not align with a geographical map, it is not
recommended to use this specific visualisation.

5.7 Visualisations

Despite the sharp learning curve, D3 is a great library for creating visualisations, and it is used in
this project. It gives large room to adjust each visualisation for optional attributes.

To better aid users to explore data in certain visualisations, it is necessary to offer a certain
level of customisation. For instance, when multiple scalar attributes are chosen, to create a scatter
diagram or a bubble chart, users should be free to change the association between attributes and
dimensions. For example, a bubble chart is generated to visualise the economic relationship
of countries between agriculture, service and industry, users should be able to adjust the
representation of the a-axis, y-axis and the size of the bubble to suit their needs.

It is important to note that in order to generate an accurate chord diagram, which is under the
Reflexive Relationship pattern, the dataset provided has to be reflexive as well. An example dataset
for a chord diagram is about the proportions of survey respondents who currently own a phone
from a specific brand, while previously owning a phone from a different brand. This example is
illustrated in figure 5.5 below. An inappropriate example dataset would be the borders table from
the Mondial database. It’s our responsibility, to convert the non-reflexive dataset to a reflexive
one, before outputting a chord diagram. This is shown in figure 5.6.

previous current proportion
Apple Samsung 1.2%
Samsung Apple 2.3%
Apple Huawei 0.5%
Huawei Apple 1.5%

Figure 5.5: reflexive dataset example for a chord diagram

country1 country2 length
CDN USA 8893.00
RA RCH 5150.00

country1 country2 length
CDN USA 8893.00
USA CND 8893.00
RA RCH 5150.00
RCH RA 5150.00

Figure 5.6: converting an inappropriate dataset to output a chord diagram

When considering key cardinality constraints, let’s take basic bar charts as an example. In
a bar chart, it is essential to limit the number of entities to avoid a cluttered appearance. To
address this, we have implemented a zoomable functionality for the bar chart. If the number of
entities exceeds the upper cardinality limit of 100, the chart automatically zooms to a scale that
displays the first 100 entities in alphabetical order (options of ascending and descending order are
also provided). However, if the user desires to explore more entities, they can easily zoom out to
view a broader range of data. This approach ensures that the bar chart remains manageable and
allows users to delve deeper into the data when necessary.

31

5.8 Handling Unknown case
The example illustrated in figure 5.3 is categorised as an unknown pattern, indicating that it
does not align with any predefined visualisations options based on available patterns. However,
as illustrated in figure 2.4, certain filter conditions can be applied to the relationship between
country and continent from many-many to one-many. In this case, we need to check if the
retrieved dataset from is one-many instead of checking the actual schema because filtering does
not change the schema structure. If the dataset satisfies the condition of a one-many relationship,
we suggest those visualisations under the One-Many Relationship pattern. Figure 5.7 illustrates
this by using a tree map, and we can see that Russia only appeared once, and this is a perfect tree
map.

Figure 5.7

32

Chapter 6

Evaluation

Throughout this project, our main focus has been the development of a data visualisation tool
that guides users to find the appropriate visual encodings for their data. Evaluating the success
of an application-based project can be challenging, as it is difficult to define success in absolute
terms. However, to assess the effectiveness of our tool, we have conducted a series of evaluation
that considers various criteria.

In this chapter, we present the results of our evaluation, including aspects such as functionality,
usability, and the ability to support data exploration. Additionally, we compare our tool with dif-
ferent visualisation solutions to better understand its unique strengths and areas for improvement.

6.1 Functionality

Task Capability
Create a bar chart showing top 3 airports in MEX which has the highest ele-
vation

Yes

Create a relevant visualisation showing all countries which have a gmt_offset
of 2

Yes

Create a sankey diagram showing all countries which have less than 100 en-
compass value in Europe

Yes

Create a relevant visualisation of all city’s which have a population of greater
than 10,000,000 over any time frame

Yes

Create a relevant visualisation that shows the countries which are connected
with border lengths of >3000

Yes

Create a scatter diagram and a bubble chart that shows Economy data with
lowest gdp with unemployment and industry

No

Create a line chart and a grouped bar chart that shows weak-entity relationship
of province_population

Yes

Create a hierarchy tree and a tree map that shows Ethnic_group to country
(ordered by key 1)

No

Create a sankey diagram showing all of the 5 countries whose area crosses
between continents

Yes

Create a scatter diagram illustrating the relation between industry and service
in the economies of different countries

Yes

Create a grouped bar chart showing the population of France, Spain, and Italy
for the years 1960 to 2015

Yes

Create a tree map visualizing the elevation of airports, with a minimum eleva-
tion of 1998

Yes

Create a sankey diagram illustrating the relation between countries and conti-
nents, in Europe and Asia

Yes

Create a chord diagram about borders between countries where the border
length is greater than 5000

Yes

33

Together with two colleagues, we came up with a list of tasks based on the Mondial database
to assess the functionality and capabilities of our application. Our application offers users a wide
range of visualisations to accommodate various scenarios. We have implemented robust filtering
functionality that handles both discrete and scalar attributes, enabling users to refine their data
based on specific needs.

However, because of the challenge we encountered related to the classification of attributes in
our application, the gmt_offset is mistakenly categorised as a scalar attribute instead of a dis-
crete attribute. This problem arises in some particular visualisation tasks, such as the second task
where the filtering condition is gmt_offset=2. Although users can still apply this filter by setting
conditions gmt_offset>=2 and gmt_offset<=2, users might find it counter-intuitive, and this
approach is clearly suboptimal. We acknowledge that the flaw in the definition of attribute types
may have affected the usability and accuracy of the tool in particular scenarios and we recognise
the need for a more refined approach to attribute type classification.

One limitation of our application is the absence of aggregation functionality. As a result, the
sixth task cannot be performed within our application because we lack the capability to sort data
and rank it based on the lowest gdp criterion. However, the first task, which involves determin-
ing the top 3 highest elevations can still be accomplished because of the unique characteristics
of the bar chart we offer. We recognise that incorporating additional aggregation functionalities
would enhance user interaction with the data and visualisation, facilitating better data exploration.
Aggregation features would also cater to the specific needs of users, allowing for more comprehen-
sive analysis and insights.

The eighth task is about the connection between weak-entity relationships and one-many rela-
tionships. In Mondial database, ethnic_group is a weak entity connected to the country entity,
as shown in figure 6.1. While weak entities are typically not ideally suited for hierarchical graph
visualisations, they can still be considered as one-many relationships with their parent entities.
This characteristic allows for the application of One-Many Relationship visualisations to represent
these relationships. Visualisations such as tree maps and circle packing offer a broader range of
possibilities to showcase the one-many nature underlying weak entities.

country

code

of
ethnic
group

name percentage

1:1

0:N

Figure 6.1

6.2 Usability
User feedback is a crucial component in assessing the overall performance of a software application.
In our evaluation process, we provided users with five specific tasks to complete using our data
visualisation tool as well as the widely-used Tableau.
Overall, users found the visualization process in our tool to be more intuitive compared to Tableau.
Using Tableau, users fail to complete the fifth task of creating a sankey diagram in a reasonable
time without help from the internet. In our application, especially for tasks related to the basic
entity and weak entity visualizations (the first three tasks in the table) users spent significantly
less time generating the desired visualisations. This highlights the efficiency of our tool in these
scenarios.

However, feedback indicated that there were some challenges in tasks involving relationships
(the fourth and fifth tasks). Partly the reason is that users are not familiar with the Mondial
database, but the main reason is that indications are not sufficient to communicate that there was
no need to manually select key attributes from other tables. In our application, foreign key at-
tributes are automatically collected to better aid users in choosing attributes, but more indications

34

Task
Create a pie chart illustrating the distribution of continent areas.
Create a bubble chart of airports showcasing the relation between longitude
latitude, and elevation
Create a grouped bar chart showing the population of France, Spain, and Italy
for the years 1960 to 2015
Create a tree map illustrating the distribution of airports across different cities
highlighting the variation in elevation
Create a sankey diagram showing all of the 5 countries whose area crosses
between continents.

and context-specific instructions should be added.

One valuable feedback we received is about the limited selection of attributes available to users
in our application. The design of attribute selection is guided by visualisation schema patterns,
which restricts users to selecting attributes from a single table. While this limitation reduces the
level of freedom users have in attribute selection, it is intended to ensure that users can create
appropriate visualisations for their data. In contrast, Tableau offers a high degree of freedom in
how users interact with the software and provides a broader range of possibilities in visualisation.
However, this increased flexibility often leads to confusion among users regarding which options to
choose in order to achieve their desired visualisation.

When considering the graph quality for supporting data exploration, users expressed that the
visualisations in Tableau were more interactive. In our application, we utilise D3.js visualisation
library, which offers powerful functionalities. However, given the time constraints of the project,
it was challenging to refine every visualisation to the same extent as in Tableau. We acknowledge
that further refinement and enhancement of the visualisations could have been beneficial.

35

Chapter 7

Conclusion

In this project, we have delivered a data visualisation tool that utilises the full knowledge of the
conceptual schema of the data source to simplify the process of selecting suitable visualisations. By
applying reverse engineering to relational databases and mapping them to the set of visualisation
schema patterns, we have introduced a visual solution that has demonstrated its effectiveness in
various visualisation tasks. In addition, we have explored expanding and implementing additional
visualisations for specific patterns. For instance, we have employed pie charts for visualising basic
entities and sunburst graphs for representing one-many relationships. Despite these achievements,
we recognise that there is still room for improvement in our data visualisation tool. For example,
enhancing the logic behind user attribute selection for visualisation, and further refinement of each
graph in terms of interactivity and customisation.

7.1 Future Work
Future works include schema transformation to create visualisations. As mentioned in [7], schema
transformations provide additional mappings between the transformed database schema and the
set of visualisation schema patterns, in order to provide more options for visualisation. A few
well-known schema transformations are: pivot, denormalisation and mandatory attribute
specialisation.

Pivoting transforms a weak entity into a subset of the same strong entity, with the key at-
tribute merged with other attributes. This enables weak entities to be represented by basic entity
visualisations. For example, in figure 4.4 (a), we can pivot the country_population to a subset,
having attribute population_1950, population_1951, and so on.

Denormalisation enables one-many visualisations to represent many-many relationship data, by
changing one of the entities into a weak entity, and the attributes of the relationship are moved
into the new weak entity. One example is illustrated in figure 2.5 previously.

Mandatory attribute specialisation transforms optional attributes to mandatory, by creating a
new subset entity with mandatory attributes. This transformation is needed for visualisations that
accept mandatory attributes only.

Another aspect of future work is to investigate further on the relations between the set of visualisa-
tion schema patterns. For example, in the evaluation section, we have discussed the possibility of
weak entities being represented by one-many visualisations. Also, investigation can be conducted
to expand the set of visualisation schema patterns, such as reflexive relationship but is one-many,
and the corresponding group of visualisations.

36

Appendix A

Appendix

Figure A.1: A descending bar chart showcasing
country areas.

Figure A.2: A pie chart representing the country
area for a selected subset of countries.

Figure A.3: A calendar chart representing the sales amount of cell phones spanning the years from
2021 to 2022.

37

Figure A.4: A scatter plot representing the ge-
ographical locations of airports, with latitude
plotted against longitude.

Figure A.5: A scatter plot representing airports,
with latitude plotted against longitude, and the
colour of each data point corresponds to the as-
sociated province.

Figure A.6: A bubble chart visualizing the ge-
ographical locations of islands, showcasing lati-
tude plotted against longitude. The size of the
circles corresponds to the elevation of each is-
land.

Figure A.7: A bubble chart visualizing the ge-
ographical locations of islands, showcasing lat-
itude plotted against longitude with the size of
the circles corresponding to the elevation of each
island. Each bubble is categorised by the island
type in colour.

Figure A.8 Figure A.9

38

Figure A.10: A line chart depicting population
trends over the years for countries of El Salvador,
Netherlands and Philippines.

Figure A.11: A stacked bar chart showing user
ratings for different phone brands.

Figure A.12: A grouped bar chart comparing
populations of provinces in France and Spain.

Figure A.13: A spider chart showing user ratings
for different phone brands

39

Figure A.14: A tree map showcasing the dis-
tribution of airports across different cities high-
lighting the variation in elevation.

Figure A.15: A sunburst graph showcasing the
distribution of airports across different cities
highlighting the variation in elevation.

Figure A.16: A hierarchy tree showcasing the
distribution of airports across different cities.

Figure A.17: A coloured hierarchy tree showcas-
ing the distribution of airports across different
cities.

Figure A.18: A circle packing graph showcasing
the distribution of airports across different cities.

Figure A.19: A coloured circle packing graph
showcasing the distribution of airports across
different cities.

40

Figure A.20: A sankey diagram of all countries
whose areas span across more than one conti-
nent.

Figure A.21: A network chart depicting the
connections between neighbouring countries that
share borders.

Figure A.22: A chord diagram showcasing
the connections between neighbouring countries
whose border length is greater than 2500 kilo-
meters.

Figure A.23: A heatmap visualising the length
of borders between neighbouring countries.

41

Bibliography

[1] Wolfgang May. Information Extraction and Integration with Florid: The Mondial Case
Study. Technical Report 131, Universität Freiburg, Institut für Informatik, 1999.

[2] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and J. Kouloumdjian. Towards the reverse en-
gineering of renormalized relational databases. In Proceedings of the Twelfth International
Conference on Data Engineering, pages 218–227, 1996. doi: 10.1109/ICDE.1996.492110.

[3] Tableau. https://www.tableau.com/ [Accessed: 2023-01-24].

[4] Google Charts. https://developers.google.com/chart [Accessed: 2023-01-24].

[5] Leland Wilkinson. The Grammar of Graphics. Springer New York, NY, 2nd edition, 2005.
URL https://doi.org/10.1007/0-387-28695-0.

[6] P McBrien and A Poulovassilis. Towards data visualisation based on conceptual modelling.
pages 91–99. Springer, 2018. doi: 10.1007/978-3-030-00847-5_8. URL http://dx.doi.org/
10.1007/978-3-030-00847-5_8.

[7] P McBrien and A Poulovassilis. Conceptual modelling approach to visualising linked data.
pages 227–245. Elsevier, 2019. doi: 10.1007/978-3-030-33246-4_15. URL http://dx.doi.
org/10.1007/978-3-030-33246-4_15.

[8] W.J. Premerlani and M.R. Blaha. An approach for reverse engineering of relational databases.
In [1993] Proceedings Working Conference on Reverse Engineering, pages 151–160, 1993. doi:
10.1109/WCRE.1993.287769.

[9] Martin Andersson. Extracting an entity relationship schema from a relational database
through reverse engineering. In Entity-Relationship Approach — ER ’94 Business Modelling
and Re-Engineering, pages 403–419, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.
URL https://doi.org/10.1007/3-540-58786-1_93.

[10] AmazingER. https://www.javadoc.io/doc/io.github.MigadaTang/amazing-er/latest/
index.html[Accessed: 2023-01-23].

[11] AutoViz. https://github.com/AutoViML/AutoViz[Accessed: 2023-01-24].

[12] ggplot2. https://ggplot2.tidyverse.org/[Accessed: 2023-01-25].

[13] Hadley Wickham. A layered grammar of graphics. Journal of Computational and Graphical
Statistics, 19(1):3–28, 2010. doi: 10.1198/jcgs.2009.07098.

[14] D3. https://d3js.org/[Accessed: 2023-01-25].

[15] Vega. https://vega.github.io/vega/[Accessed: 2023-01-25].

[16] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. Vega-
lite: A grammar of interactive graphics. IEEE Transactions on Visualization and Computer
Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.2599030.

[17] JDBC. https://www.doc.ic.ac.uk/~pjm/databases/jdbc.html[Accessed: 2023-05-03].

[18] Natural Earth. https://www.naturalearthdata.com/[Accessed: 2023-06-07].

42

https://www.tableau.com/
https://developers.google.com/chart
https://doi.org/10.1007/0-387-28695-0
http://dx.doi.org/10.1007/978-3-030-00847-5_8
http://dx.doi.org/10.1007/978-3-030-00847-5_8
http://dx.doi.org/10.1007/978-3-030-33246-4_15
http://dx.doi.org/10.1007/978-3-030-33246-4_15
https://doi.org/10.1007/3-540-58786-1_93
https://www.javadoc.io/doc/io.github.MigadaTang/amazing-er/latest/index.html
https://www.javadoc.io/doc/io.github.MigadaTang/amazing-er/latest/index.html
https://github.com/AutoViML/AutoViz
https://ggplot2.tidyverse.org/
https://d3js.org/
https://vega.github.io/vega/
https://www.doc.ic.ac.uk/~pjm/databases/jdbc.html
https://www.naturalearthdata.com/

	Introduction
	Motivation
	Example
	Contributions

	Background
	Grammar of Graphics
	Visualisation Schema Patterns

	Related Work
	Reverse Engineering
	Research areas
	Existing solution

	Visualisation Solutions
	Tableau
	AutoViz
	SPSS Statistics

	Visualisation Libraries
	ggplot2
	D3
	Vega

	Design
	Overview
	Connect to the Database
	Ethical issues

	Reverse Engineering
	Schema Pattern Matching
	Pattern Characteristics
	Handling Subset Entities

	Recommendation for Visualisations
	Basic Entity Visualisations
	Weak Entity Visualisations
	One-Many Relationship Visualisations
	Many-Many Relationship Visualisations
	Reflexive Relationship Visualisations

	Visualisation Generation

	Technical Implementation
	Framework choices
	Connect to the Database
	Reverse Engineering
	Handling User Selections

	Pattern Matching to models
	Retrieving Dataset from the Database
	Filtering

	Data Type Classfication
	Visualisations
	Handling Unknown case

	Evaluation
	Functionality
	Usability

	Conclusion
	Future Work

	Appendix

